Экономика » Скачать » Учебники - Книги » Теория игр в общественных науках - Захаров А.В. - Учебник

Теория игр в общественных науках - Захаров А.В. - Учебник

Скачать - Книги - Учебники

Учебник Теория игр в общественных науках, Захаров А.В.

Год выпуска: 2015

Автор: Захаров А.В.

Жанр: Экономика

Формат: PDF

Качество: OCR

Количество страниц: 260

Описание:

В учебнике «Теория игр в общественных науках» излагаются основы некооперативной теории игр и разбираются примеры из различных областей экономики и политической науки. Для понимания материала необходимо знание математического анализа и теории вероятностей на уровне первого курса.

Книга может быть использована как основной учебник по семестровому курсу теории игр для студентов бакалавриата или магистратуры, не изучавших предмет ранее, или для более короткого повторного курса.


В настоящее время имеется множество книг по теории игр на русском языке, однако необходимость в написании, как минимум, еще одной такой книги у меня не вызывает сомнений.

Причина здесь кроется в том факте, что термин «теория игр» существенным образом многозначный. Во-первых, существует теория игр в рамках общей теории исследования операций (игры с нулевой суммой, потенциальные игры и методы численного решения). Во-вторых, есть теория игр с точки зрения чистой математики (теоремы о неподвижных точках, параметрические задачи на максимум, поведение многозначных отображений, многоцелевое динамическое программирование). В-третьих, можно говорить о теории игр с точки зрения математической логики («детские» игры с последовательными ходами, в которых нужно отыскать оптимальную стратегию одного из двух игроков, теорема Цермело и метод обратной индукции, алгоритмическая сложность поиска равновесий Нэша). В-четвертых, можно говорить о теории игр с точки зрения экономики и политической науки (гербарий сюжетов, так или иначе концентрирующийся вокруг трагедии общин и иных примеров неэффективности равновесий по Нэшу). Все перечисленные «теории игр» — это совершенно разные науки! И по методам, и по характеру формулируемых задач, и по тому математическому аппарату, который является в каждой из них центральным.

Предлагаемая читателю книга «Теория игр в общественных науках» посвящена решению не очень простой задачи. А именно, разъяснить не-математикам основы теории игр на строго научном языке. Такая попытка является достаточно рискованной. В то же время, учитывая то, что данная книга:

  • почти единственный текст на русском языке, где подробно обсуждаются аукционы, задача дизайна механизмов, а также сигнальные игры и равновесия в них, в рамках общей теории динамических игр с неполной информацией;
  • возможно, не единственная, но исключительно удачная попытка разъяснить базовые для современного экономиста вещи на строгом уровне (равновесия в играх голосования и политические равновесия, решение по доминированию в модели олигополии Курно, а также целый ряд других классических сюжетов, входящих в необходимый минимум любого работающего экономиста);
  • в числе прочего, «малая энциклопедия», или «джентльменский набор» сюжетов, которыми оперирует любой грамотный экономист-теоретик, я полагаю, что риск, предпринятый автором, оправдан.

Научное редактирование не коснулось части разобранных в книге примеров, однако все они в свое время были проработаны во время семинарских и лекционных занятий в Высшей школе экономики. И автор, и научный редактор с благодарностью учтут все присланные замечанные вами опечатки и неточности при последующем переиздании книги после первой «пробы читателем».

Алексей Савватеев

доктор физико-математических наук


Люди, организации и государства все время взаимодействуют друг с другом. Как поступит каждый, когда его выигрыш зависит не только от его собственного выбора, но и от чьего-то другого? Теория игр — это раздел прикладной математики, позволяющий осмыслить принимаемые в подобных ситуациях решения. Теория игр широко используется в экономике, а также в политологии, социологии и науке об управлении.

Эта книга написана на основе курсов, читаемых автором на факультетах экономики и прикладной математики Высшей школы экономики в Москве на протяжении последних четырех лет. Книга адресована студентам бакалавриатов и магистратур высших учебных заведений, изучающих экономику, политологию, менеджмент, прикладную математику. Предполагается, что читатель владеет основами математического анализа (дифференциальное и интегральное исчисление), а также основами теории вероятностей. Книга также может представлять интерес для студентов магистратуры (особенно, не изучавших предмет ранее) и любого читателя, желающего подготовить себя к чтению международной академической литературы в области экономики или политологии.

При составлении книги автор преследовал три непростые и отчасти противоречивые задачи.

Во-первых, книга должна содержать достаточно большой, но не чрезмерный, объем формальных математических определений, теорем и доказательств, составляющих костяк теории. С одной стороны, книга задумывалась как учебник, предназначенный для студентов бакалавриатов экономических вузов, что предполагало наличие у читателя знания математического анализа, по крайней мере, на начальном уровне. С другой стороны, целью книги не являлся обзор (пусть даже поверхностный) всего инструментария, разработанного по сей день, или формулирование утверждений как можно в более общей форме. Таким образом, необходимо было достичь компромисс между доступностью и общностью (и в значительно меньшей мере — между доступностью и точностью) формулировок и объемом.

Во-вторых, книга должна быть «живой», т.е. содержать большое число примеров применения теории в таких общественных науках, как экономика или политология, чтобы поддерживать интерес читателя и не допускать ощущения, что теория оторвана от реальности и от предметной области читателя. Книга должна быть способна заинтересовать незнакомого с предметом читателя.

В-третьих, как подбор математических утверждений, так и подбор примеров и задач должны быть современными и актуальными. Наука быстро меняется. Те ветви теории, которые казались перспективными (и даже необходимыми) двадцать-тридцать лет назад, сегодня представляют лишь исторический интерес — т.е. не используются в экономической, политологической или иной науке. В то же время появились новые направления. Поэтому одним из критериев отбора задач для книги являлся индекс цитирования работ, откуда они были взяты.

Структура книги следует более-менее установившемуся стандарту для учебников среднего и продвинутого уровней по данному предмету. Учебник разделен на четыре главы.

Первая глава посвящена статическим играм с полной информацией. Приводится определение игры в нормальной форме, определения доминирования, смешанных стратегий и равновесия Нэша. В качестве приложения приводится доказательство теоремы Нэша о существовании равновесия.

Во второй главе рассматриваются динамические игры с полной информацией. Помимо совершенства по подыграм для конечных игр, в главе говорится о конечно и бесконечно повторяющихся играх. Также дается определение совершенного марковского равновесия в повторяющихся играх (это — очень востребованная в наше время аналитическая концепция) и разбираются несколько задач, использующих такую игровую постановку.

Третья глава имеет два раздела. Во-первых, это байесовы игры, или статические игры с неполной информацией. Во-вторых, в главе излагаются основы теории дизайна механизмов и теории аукционов. В частности, формулируется и доказывается теорема об эквивалентности доходов в аукционах, даются определения и условия Нэш-реализуемости и реализуемости в доминирующих стратегиях.

Наконец, четвертая глава посвящена динамическим играм с неполной информацией. Большое внимание уделяется изложению различных концепций решения для таких игр (секвенциального равновесия, совершенного равновесия) и их взаимосвязи, сигнальным играм, играм с сообщениями.

В книге разбираются или предлагаются для самостоятельного решения около 200 примеров и задач, в том числе и стандартные примеры из области экономики — производство общественных благ, объемная и ценовая конкуренция, аукционы, некоторые макроэкономические модели. Значительная часть примеров приходится и на политологические темы, такие как поведение политиков и избирателей на выборах, лоббирование, моделирование решений в авторитарных политических системах, возникновение массовых протестов.

Для вводного курса в теорию игр объемом в один семестр в качестве основного текста можно использовать первые две главы данной книги, а также (в зависимости от скорости освоения материала) начало третьей главы. Вся книга может быть использована в качестве учебника в рамках двухсеместровых курсов, рассчитанных на студентов 3-4 года обучения. Книга также может быть использована в качестве вспомогательного материала для продвинутого курса по политологии или политической экономике.

Автор выражает глубокую признательность и благодарность К.С. Сорокину, помогавшему мне вести курсы в Высшей школе экономики (ему же принадлежит доказательство теоремы 4.1); А.В. Савватееву, проведшему большую работу по научному редактированию текста; Д.С. Карабекяну, редактировавшему тексты задач; Ф.Т. Алескерову, С.Б. Измалкову, а также всем студентам, с которыми я работал и которые помогали мне находить ошибки в этом тексте.


Содержание учебника

«Теория игр в общественных науках»

Статические игры с полной информацией

  • Статические игры с полной информацией: чистые стратегии
    • Игры в нормальной форме
    • Доминирование
    • Последовательное удаление доминируемых стратегий
    • Равновесие Нэша
    • Функции реакции
    • Равновесие Нэша и доминирование
    • Примеры
  • Смешанные стратегии и существование равновесия
    • Определение смешанных стратегий
    • Равновесие в смешанных стратегиях
    • Интерпретация смешанных стратегий и равновесий
    • Смешанное равновесие в антагонистической игре 2хМ
  • Непрерывные игры
    • Теоремы о существовании равновесия
    • Примеры
  • Приложение. Доказательство теоремы Нэша

Динамические игры с полной информацией

  • Игры в развернутой форме
    • Дерево игры
    • Информационные множества и стратегии в динамической игре
    • Игры с совершенной информацией
    • Смешанные стратегии в динамической игре
    • Совершенство по подыграм
    • Примеры
  • Повторяющиеся игры
    • Игры, повторяющиеся конечное число раз
    • Бесконечно повторяющиеся игры
    • Примеры
    • Модель последовательного торга
  • Приложения
    • Определение игры в развернутой форме
    • Доказательство теоремы о существовании равновесия в играх с совершенной информацией
    • Определение подыгры

Статические игры с неполной информацией

  • Байесовы игры
    • Определения
    • Примеры
    • Равновесие дискретного отклика
  • Дизайн механизмов
    • Определения
    • Нэш-реализуемость механизмов
    • Реализуемость в доминирующих стратегиях
    • Введение в теорию аукционов
    • Эквивалентность доходов в аукционах
  • Приложение. Теорема Эрроу о диктаторе

Динамические игры с неполной информацией

  • Определение равновесий и их существование
    • Сильное и слабое секвенциальное равновесие
    • Совершенное (относительно «дрожащей руки») равновесие
    • Игры с наблюдаемыми действиями
  • Сигнальные игры
    • Определение
    • Простой пример сигнальной игры
    • Сигнализирование на рынке труда
    • Дополнительные ограничения на равновесия в сигнальных играх
    • Игры с сообщениями
  • Примеры
    • Раскрытие информации в играх с сообщениями
    • Экономическая теория политического популизма
    • Репутация и кредитно-денежная политика центрального банка
    • Блеф в покере
    • Риск оппортунистического поведения
  • Приложение
  • Доказательство теоремы 4.1 о существовании совершенного равновесия

Список литературы
Русско-английский словарь терминов
Предметный указатель


скачать учебник: Теория игр в общественных науках - Захаров А.В.